Windows and Doors Extraction from Point Cloud Data Combining Semantic Features and Material Characteristics

نویسندگان

چکیده

Point cloud data have become the primary spatial source for 3D reconstruction of building engineering, where reconstructed information models can improve construction efficiency. In such applications, detecting windows and doors is essential. Previous research mainly used red-green-blue (RGB) or semantic features detection, combination these two was not considered. Therefore, this proposed a practical approach to using point with material characteristics. The are first segmented Gradient Filtering Random Sample Consensus (RANSAC) obtain indoor without intrusions protrusions. As input, projected horizontal planes as 2D data. then transformed images, representing area feature extraction. On boundary each potential opening extracted an improved Bounding Box algorithm, extraction result back Based on data, reflectivity applied differentiate from openings, number points check condition doors. abovementioned tested one campus building, including big rooms corridor. experimental results showed that accurate detection successfully reached. completeness 100%, correctness 90.32%. total time 22.8 s processing 2 million reading 10.319 showing 4.938 s.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

extraction and acetylation of purified trypsin from bovin pancreas and study of some its physico-chemical properties

آنزیم تریپسین در شرایط قلیایی ناپایدار می باشد .و فعالیت پروتئولیتیکی تریپسین منجربه خود هضمی آن در جایگاههای خاصی می گردد. بنابر این آنزیمی با ناپایداری بالا محسوب میگردد. در سالهای اخیر موفق شدند که با ایجاد تغیرات شیمیایی با اضافه کردن فلزات خاص ، کلسیم و یا عمل استیلاسیون منجر به افزایش پایداری آنزیم تریپسین گردند. مطالعات در حال حاضر نشان می دهد که تریپسین استیله شده فعالیت آنزیمی خود را ...

15 صفحه اول

Extraction of Geometric Primitives from Point Cloud Data

Object detection and parameter estimation in point cloud data is a relevant subject to robotics, reverse engineering, computer vision, and sport mechanics. In this paper a software is presented for fully-automatic object detection and parameter estimation in unordered, incomplete and error-contaminated point cloud with a large number of data points. The software consists of three algorithmic mo...

متن کامل

Combining Low-Level Features for Semantic Extraction in Image Retrieval

An object-oriented approach for semantic-based image retrieval is presented. The goal is to identify key patterns of specific objects in the training data and to use them as object signature. Two important aspects of semantic-based image retrieval are considered: retrieval of images containing a given semantic concept and fusion of different low-level features. The proposed approach splits the ...

متن کامل

Negotiating Closed Doors and Windows of Opportunity

This paper examines land tenure in informal urban settlements in India from a gender perspective through field research conducted in Ahmedabad in collaboration with the Self-Employed Women’s Association (SEWA). The author describes the formal and informal tenure arrangements that were in place in these settlements and analyses their implications for women. She proceeds to raise key issues that ...

متن کامل

Dense Point Cloud Extraction From Oblique Imagery

With the increasing availability of low-cost digital cameras with small or medium sized sensors, more and more airborne images are available with high resolution, which enhances the possibility in establishing three dimensional models for urban areas. The high accuracy of representation of buildings in urban areas is required for asset valuation or disaster recovery. Many automatic methods for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Buildings

سال: 2023

ISSN: ['2075-5309']

DOI: https://doi.org/10.3390/buildings13020507